Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present Atacama Compact Array (ACA) Band-3 observations of the protocluster SPT2349−56, an extreme system hosting >10 ultraluminous infrared galaxies (ULIRGs;LIR ≳ 1012L⊙) in a 200 kpc diameter region atz = 4.3, to study its integrated molecular gas content via CO(4–3) and the long-wavelength dust continuum. The ∼30 hr integration represents one of the longest exposures yet taken on a single pointing with the ACA 7 m. The low-resolution ACA data (21 0 × 12 2) reveal a 75% excess CO(4–3) flux compared to the sum of individual sources detected in higher-resolution Atacama Large Millimeter/submillimeter Array (ALMA) data (1 0 × 0 8). Our work also reveals a similar result by tapering the ALMA data to 10″. In contrast, the 3.2 mm dust continuum shows little discrepancy between ACA and ALMA. A single-dish [Cii] spectrum obtained by APEX/FLASH supports the ACA CO(4–3) result, revealing a large excess in [Cii] emission relative to ALMA. The missing flux is unlikely due to undetected faint sources but instead suggests that high-resolution ALMA observations might miss extended and low-surface-brightness gas. Such emission could originate from the circumgalactic medium or the preheated protointracluster medium (proto-ICM). If this molecular gas reservoir replenishes the star formation fuel, the overall depletion timescale will exceed 400 Myr, reducing the requirement for the simultaneous ULIRG activity in SPT2349−56. Our results highlight the role of an extended gas reservoir in sustaining a high star formation rate in SPT2349−56 and potentially establishing the ICM during the transition phase to a mature cluster.more » « lessFree, publicly-accessible full text available March 17, 2026
- 
            Abstract This paper gives an overview of Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation (TEMPLATES), a JWST Early Release Science program that targeted four extremely bright, gravitationally lensed galaxies, two extremely dusty and two with low attenuation, as templates for galaxy evolution studies with JWST. TEMPLATES obtains a common set of spectral diagnostics for these 1.3 ≤z≤ 4.2 galaxies, in particular Hα, Paschenα, and the rest-frame optical and near-infrared continua. In addition, two of the four targets have JWST coverage of [Oiii] 5007 Å and Hβ; the other two targets have JWST coverage of polycyclic aromatic hydrocarbon 3.3μm and complementary Atacama Large Millimeter/submillimeter Array data covering the [Cii] 158μm emission line. The science goals of TEMPLATES are to demonstrate attenuation-robust diagnostics of star formation, map the distribution of star formation, compare the young and old stellar populations, and measure the physical conditions of star formation and their spatial variation across the galaxies. In addition, TEMPLATES has the technical goal to establish best practices for the integral field units within the NIRSpec and MIRI instruments, both in terms of observing strategy and in terms of data reduction. The paper describes TEMPLATES’s observing program, scientific and technical goals, data reduction methods, and deliverables, including high-level data products and data reduction cookbooks.more » « lessFree, publicly-accessible full text available December 27, 2025
- 
            Abstract We present the first spatially resolved maps of gas-phase metallicity for two dust-obscured star-forming galaxies atz∼ 4, from the JWST TEMPLATES Early Release Science program, derived from NIRSpec integral field unit spectroscopy of the Hαand [Nii] emission lines. Empirical optical line calibrations are used to determine that the sources are globally enriched to near-solar levels. While one source shows elevated [N ii]/Hαratios and broad Hαemission consistent with the presence of an active galactic nucleus in a ≳1 kpc region, we argue that both systems have already undergone significant metal enrichment as a result of their extremely high star formation rates. Utilizing Atacama Large Millimeter/submillimeter Array rest-frame 380μm continuum and [Ci](3P2–3P1) line maps we compare the spatial variation of the metallicity and gas-to-dust ratio in the two galaxies, finding the two properties to be anticorrelated on highly resolved spatial scales, consistent with various literature studies ofz∼ 0 galaxies. The data are indicative of the enormous potential of JWST to probe the enrichment of the interstellar medium on ∼kpc scales in extremely dust-obscured systems atz∼ 4 and beyond.more » « less
- 
            Abstract We have observed thez= 4.3 protocluster SPT2349−56 with the Australia Telescope Compact Array (ATCA) with the aim of detecting radio-loud active galactic nuclei (AGNs) among the ∼30 submillimeter (submm) galaxies (SMGs) identified in the structure. We detect the central complex of submm sources at 2.2 GHz with a luminosity ofL2.2= (4.42 ± 0.56) × 1025W Hz−1. MeerKAT and the Australian Square Kilometre Array Pathfinder also detect the source at 816 MHz and 888 MHz, respectively, constraining the radio spectral index toα= −1.45 ± 0.16, implyingL1.4,rest= (2.2 ± 0.2) × 1026W Hz−1. The radio observations do not have sufficient spatial resolution to uniquely identify one of the three Atacama Large Millimeter/submillimeter Array (ALMA) galaxies as the AGN, however the ALMA source properties themselves suggest a likely host. This radio luminosity is ∼100× higher than expected from star formation, assuming the usual far-infrared–radio correlation, indicating an AGN driven by a forming brightest cluster galaxy. None of the SMGs in SPT2349−56 show signs of AGNs in any other diagnostics available to us, highlighting the radio continuum as a powerful probe of obscured AGNs. We compare these results to field samples of radio sources and SMGs, along with the 22 gravitationally lensed SPT-SMGs also observed in the ATCA program, as well as powerful radio galaxies at high redshifts. The (3.3 ± 0.7) × 1038W of power from the radio-loud AGN sustained over 100 Myr is comparable to the binding energy of the gas mass of the central halo, and similar to the instantaneous energy injection from supernova feedback from the SMGs in the core region. The SPT2349−56 radio-loud AGNs may be providing strong feedback on a nascent intracluster medium.more » « less
- 
            Abstract SPT0311-58, a system of two interacting galaxies in the Epoch of Reionization, exists in one of the rarest, most massive dark matter halos theoretically possible in that era. Studying the interstellar medium (ISM) in these galaxies can illuminate the process of galaxy formation in the early Universe. In this work, we explore the multiphase ISM in this system, using ALMA observations of the [Cii] 158, [Oi] 146, [Nii] 122, and [Oiii] 88 fine-structure lines and dust continuum. We find wide variations in line ratios between the eastern and western galaxies, as well as across the western galaxy. Continuum colors indicate that SPT0311-58 E has a higher ionization parameter ( ) than SPT0311-58 W ( ). The ratio of [Oiii] 88–[Nii] 122 and the ionization parameter constraints combine to demonstrate near-solar metallicity in these objects just 800 Myr after the Big Bang.more » « less
- 
            ABSTRACT We present APEX-LABOCA 870-μm observations of the fields surrounding the nine brightest high-redshift unlensed objects discovered in the South Pole Telescope’s (SPT) 2500 deg2 survey. Initially seen as point sources by SPT’s 1-arcmin beam, the 19-arcsec resolution of our new data enables us to deblend these objects and search for submillimetre (submm) sources in the surrounding fields. We find a total of 98 sources above a threshold of 3.7σ in the observed area of 1300 arcmin2, where the bright central cores resolve into multiple components. After applying a radial cut to our LABOCA sources to achieve uniform sensitivity and angular size across each of the nine fields, we compute the cumulative and differential number counts and compare them to estimates of the background, finding a significant overdensity of $$\delta \, {\approx }\,$$10 at $$S_{870}= 14$$ mJy. The large overdensities of bright submm sources surrounding these fields suggest that they could be candidate protoclusters undergoing massive star formation events. Photometric and spectroscopic redshifts of the unlensed central objects range from $z= $3 to 7, implying a volume density of star-forming protoclusters of approximately 0.1 Gpc−3. If the surrounding submm sources in these fields are at the same redshifts as the central objects, then the total star formation rates of these candidate protoclusters reach 10 000 M⊙ yr−1, making them much more active at these redshifts than seen so far in either simulations or observations.more » « less
- 
            ABSTRACT The protocluster SPT2349−56 at $z = 4.3$ contains one of the most actively star-forming cores known, yet constraints on the total stellar mass of this system are highly uncertain. We have therefore carried out deep optical and infrared observations of this system, probing rest-frame ultraviolet to infrared wavelengths. Using the positions of the spectroscopically confirmed protocluster members, we identify counterparts and perform detailed source deblending, allowing us to fit spectral energy distributions in order to estimate stellar masses. We show that the galaxies in SPT2349−56 have stellar masses proportional to their high star formation rates, consistent with other protocluster galaxies and field submillimetre galaxies (SMGs) around redshift 4. The galaxies in SPT2349−56 have on average lower molecular gas-to-stellar mass fractions and depletion time-scales than field SMGs, although with considerable scatter. We construct the stellar-mass function for SPT2349−56 and compare it to the stellar-mass function of $z = 1$ galaxy clusters, finding consistent shapes between the two. We measure rest-frame galaxy ultraviolet half-light radii from our HST-F160W imaging, finding that on average the galaxies in our sample are similar in size to typical star-forming galaxies at these redshifts. However, the brightest HST-detected galaxy in our sample, found near the luminosity-weighted centre of the protocluster core, remains unresolved at this wavelength. Hydrodynamical simulations predict that the core galaxies will quickly merge into a brightest cluster galaxy, thus our observations provide a direct view of the early formation mechanisms of this class of object.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
